Reviews

Thermodynamics of copper, silver, gold, and mercury acetylenides

B. V. Lebedev* and T. G. Kulagina

Research Institute of Chemistry at the N. I. Lobachevsky Nizhnii Novgorod State University, 23 block, 5 prosp. Gagarina, 603950 Nizhnii Novgorod, Russian Federation.

Fax: +7 (831 2) 65 6450. E-mail: lebedevb@ichem.unn.runnet.ru

Thermodynamic characteristics of the copper, silver, gold, and mercury acetylenides obtained from the data of precise calorimetric measurements in the region from 5 to 340 K are considered. Tables of the thermodynamic functions $C_p^{\,\circ}(T)$, $H^{\circ}(T) - H^{\circ}(0)$, $S^{\circ}(T)$, and $G^{\circ}(T) - H^{\circ}(0)$ at 0—340 K, standard enthalpies of combustion $\Delta H_{\rm c}^{\,\circ}$, and thermodynamic characteristics of formation of the acetylenides from simple substances $\Delta H_{\rm f}^{\,\circ}$, $\Delta S_{\rm f}^{\,\circ}$, $\Delta G_{\rm f}^{\,\circ}$, and $\log K_{\rm f}^{\,\circ}$ at 298.15 K and standard pressure are presented. Temperature plots of the heat capacity of the acetylenides were analyzed in the framework of Tarasov's theory and the fractal version of Debye's theory of heat capacity. The values of heat capacity of several acetylenides yet unstudied were estimated.

Key words: copper, silver, gold, and mercury acetylenides; heat capacity; enthalpy of formation; calorimetry; thermodynamics.

Introduction

Interest in copper, silver, gold, and mercury acetylenides composing broad class of organometallic compounds is due first of all to their application in organic synthesis. For example, copper acetylenide was successfully used for the synthesis of $\text{Cu}(\text{C=C})_{20}\text{Cu},^4$ carbyne derivative, viz., the third allotropic carbon modification, which is of great scientific and practical interest. In addition, acetylenides possess semiconducting properties, which makes them promising for practical use. Chemistry of copper and silver acetylenides is described in the book and reviews. 9,10

The thermal stability of copper and silver acetylenides increases 11 in the order silver butylacetylenide < copper butylacetylenide < silver phenylacetylenide < copper phenylacetylenide. Acetylenides were shown $^{12-14}$ to be

coordination polymers. The thermodynamic functions¹⁵ of several acetylenides at 298.15 K and thermochemical parameters of formation 16 of acetylenides have previously been determined. For some thermodynamic characteristics of acetylenides, see also the monograph. 17 A calorimetric study of gold and mercury acetylenides have recently been carried out at the Laboratory of Polymer Thermodynamics at the Research Institute of Chemistry at the Nizhnii Novgorod State University. Thus, the results of calorimetric studies have been reported in various publications but have never been generalized. Meanwhile, available data are sufficient for generalization and analysis, which seems fruitful for the formation of general views about acetylenide thermodynamics and revealing possible relations of their thermodynamic properties to the composition, structure, and temperature.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1071-1078, July, 2001.

Table 1. Some characteristics of acetylenides studied

Compound	Molecular weight	Found Calculated (%)			Empirical formula	Reference
		С	Н	M		
Copper vinylacetylenide (1)	144.614	41.83 41.92	2.72 2.64	<u>55.45</u> 55.44	C ₂ H ₂ C ₂ Cu	21
Copper butylacetylenide (2)	144.680	49.72 49.81	6.58 6.27	43.70 43.92	$C_4H_9C_2Cu$	22
Copper hexylacetylenide (3)	172.730	55.63 54.16	7.59 7.89	36.78 36.98	$C_6H_{13}C_2Cu$	23
Copper phenylacetylenide (4)	164.670	58.81 58.31	3.24 3.04	62.05 61.29	$C_6H_5C_2Cu$	24
Silver phenylacetylenide (5)	208.991	45.57 45.70	2.35 2.40	52.08 51.90	$C_6H_5C_2Ag$	25
Фенилацетиленид золота (6)	298.094	$\frac{32.07}{32.23}$	1.67 1.69	65.75 66.07	$C_6H_5C_2Au$	26
Gold phenylacetylenide (7)	178.701	60.64 60.49	4.14 3.95	35.92 35.56	$C_7H_7C_2Cu$	21
Copper phenylethynylacetylenide (8)	188.696	63.15 63.65	3.11 2.67	33.60 33.68	$C_8H_5C_2Cu$	21
Mercury diphenylacetylenide (9)	402.845	47.46 47.70	2.48 2.50	49.77 49.79	$(C_6H_5C_2)_2Hg$	27

In this work, we examined and generalized the results of calorimetric studies of the thermodynamic properties of metal acetylenides. Using our and published data, we found relations of their properties to the composition, structure, and temperature under a standard pressure.

Experimental

Characteristics of samples. Samples of copper, silver, gold, and mercury acetylenides were prepared by previously described procedures. 18-20 Some published characteristics are presented in Table 1. According to X-ray analysis data, all the acetylenides are crystalline compounds. More detailed characteristics of the studied samples can be found in original works cited in Table 1.

Calorimetric apparatus. For measuring the heat capacity in the 5-340 K region, we used partially or completely automated calorimeters UUNT and TAU-1, whose designs and working procedures have previously been described. $^{28-30}$ Note that these calorimeters allow the determination of C_p° values of solid and liquid substances with an error of 1.5–2% at helium temperatures, 0.5% in the 10-40 K interval, and 0.2% in a region of 40-340 K. The main characteristics of experiments on measuring the heat capacities of acetylenides are presented in Table 2.

The combustion energy of acetylenides was measured using a V-08 calorimeter with a static bomb and an isothermic shell. The calorimeter was improved³² at the Research Institute of Chemistry at the Nizhnii Novgorod State University. The calibration of the calorimeter with burning of succinic acid prepared at the D. I. Mendeleev Research Institute of Metrology (St. Petersburg) gave the standard enthalpy of combustion of the acid that coincided with the passport value with an error of 0.017%. The energies of combustion of acetylenides were determined under the calorimetric bomb conditions at 298.15 K (Table 3). Combustion was complete in all experiments. On calculating $\Delta \bar{U}_{c}$, standard thermochemical corrections for the combustion of auxiliary substances used in acetylenide combus-

Table 2. Parameters of experiments on measuring the heat capacity C_p°/J K⁻¹ mol⁻¹) of acetylenides

Com-	T*/K	N^{**}	Scat	Refe-	
pound			$\Delta T/\mathrm{K}$	Deviation (%)	- rence
1	14.3—315	79	14.3—50 50—330	1 0.3	21
2	14—334	81	14—50 50—330	1 0.3	22
3	6.5—340	171	6.5—80 80—250	1.1	23
4	11.6—330	73	250—330 11.6—50	0.2	24
5	5—330	76	50—330 5—10 10—30	0.3 1 0.5	25
6	13—330	90	30—330 13—80	0.2	26
7	13.9—333	88	80—330 13.9—50 50—330	0.2 1.2 0.2	21
8	11.6—327	80	11.6—50 50—327	1 0.2	21
9	5—340	161	5—80 80—340	1 0.2	31

^{*} Temperature region of heat capacity measurement.

^{**} Number of experimental points C_p° .

*** Scatter of experimental C_p° values near the corresponding averaging curves of C_p° vs. T.

Table 3. Data of experiments on acetylenide combustion at T = 298.15 K and p = 101.325 kPa

Com- pound	Number of entries	<i>m</i> /g	<i>Q</i> /J	$[m^{\text{exp}}(\text{CO}_2)/m^{\text{calc}}(\text{CO}_2)] \cdot 100\%$	$\Delta \overline{U}_{ m c}$ /J g ⁻¹	Refe- rence
1	8	0.1673—0.2323	27403—29087	99.15—99.30	21246±18	33
2	7	0.2509 - 1.1043	20586-30364	99.81 ± 0.03	26763±18	22
3	6	0.2026 - 0.7695	14778-21712	98.51-100.1	29298.4±19.2	23
4	8	0.2035—1.1531	25204-30260	100.11 ± 0.02	26198±8	24
5	8	0.4694 - 1.2191	21957-29136	96.64 ± 0.07	20136±7	25
9	5	1.3771—1.4376	29929—31490	_	20707 ± 6	27

Note. Designations: m is the weight of the sample, Q is the total amount of energy released when the substance is burnt in a calorimetric bomb, $\Delta \bar{U}_c$ is the mean value of the combustion energy, and $[m^{exp}(CO_2)/m^{calc}(CO_2)] \cdot 100\%$ is the ratio of CO_2 weights found in the combustion products to calculated by its chemical formula.

tion were applied. The $\Delta \bar{U}_c$ values are given with the doubled root-mean-square error calculated by the formula

$$\delta = 2[\sum x^2/n(n-1)^{1/2}],\tag{1}$$

where x is deviation from the mean value, and n is the number of experiments.

Results and Discussion

Heat capacity. The found temperature plots of the heat capacity $C_p^{\circ} = f(T)$ for the studied acetylenides (Figs. 1 and 2) have no specific feature for all acetylenides: the heat capacity increases smoothly with temperature in the whole temperature region.

The heat capacity of copper phenylacetylenide is invariably lower than those of silver and gold phenylacetylenides (see Fig. 1). The heat capacities of the latters virtually coincide at T < 70 K, and at T > 70 K the C_p° values of gold acetylenide are somewhat higher than the corresponding values for silver acetylenide. It has previously been mentioned²⁶ that the heat capacities of the phenylacetylenides are proportional to the atomic masses of the incorporated Au, Ag, and Cu atoms. At

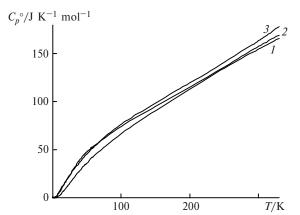
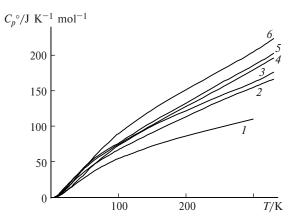


Fig. 1. Heat capacity of copper (1), silver (2), and gold (3) acetylenides.

 $T=298.15~{\rm K}$ the $C_p{}^\circ$ values of these acetylenides are described by the equation

$$C_p^{\circ} = 149.87 + 0.0645x, \tag{2}$$


and at 200 K

$$C_p^{\ \circ} = 109.87 + 0.0488x,\tag{3}$$

where x is the atomic mass of Au, Ag or Cu. Equations (2) and (3) reproduce the experimental data on C_p ° at the corresponding temperatures with an error within 0.02 and 0.03%, respectively.

At T > 70 K the plots of C_p° vs. T for copper acetylenides are arranged in the following sequence: vinylacetylenide < phenylacetylenide < butylacetylenide < betylenide < phenylacetylenide < hexylacetylenide (see Fig. 2, curves I-6).

For many compounds the contribution of methylene groups to the thermodynamic properties is additive, $^{32,34-38}$ and the corresponding values are usually proportional to the number of C atoms in the alkyl group. It can be assumed the same is valid for alkylacetylenides. Then, based on the experimental data for C_p° of copper butyl- and hexylacetylenides, we can

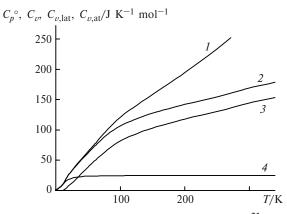
Fig. 2. Heat capacity of copper vinyl- (1), phenyl- (2), butyl- (3), benzyl- (4), phenylethynyl- (5), and hexylacetylenides (6).

obtain the equation of the plot, e.g., for the heat capacity of copper alkylacetylenides vs. number of C atoms, which enables the estimation of the heat capacity of yet unstudied alkylacetylenides. Using the C_p° values for copper butyl- and hexylacetylenides at 298.15 K (see section *Thermodynamic functions*), we obtained

$$C_p^{\circ}$$
 (298.15 K) = 32.8 + 21.3 n , (4)

where n is the number of C atoms in a copper alkylacetylenide molecule. Equation (4) reproduces the numerical values of heat capacity (J K⁻¹ mol⁻¹) of these compounds with an error within $\pm 0.02\%$. In the general case, at any temperature

$$C_p^{\ \circ} = a + bn,\tag{5}$$


where a and b are the coefficients at the corresponding temperatures. Equation (5) is valid for the temperature region in which the heat capacity of alkylacetylenides is a linear function of temperature: $C_p^{\circ}(T) \sim T$. For butyl- and hexylacetylenides, this is the region of T > 150 K. For the estimation of C_p° of alkylacetylenides with n from at least 2 to 10, the a and b coefficients can easily be obtained using the heat capacities of butyl- and hexylacetylenides at the corresponding temperatures (the data on them are presented in section Thermodynamic functions). Below we present C_p°/J K⁻¹ mol⁻¹ at 298.15 K of alkylacetylenides for n = 1-3, 5, and 7–10 for methyl-, ethyl-, propyl-, amyl-, heptyl-, octyl-, nonyl-, and decylacetylenides, respectively, calculated from Eq. (4).

n
 1
 2
 3
 5
 7
 8
 9
 10

$$C_p^{\circ}$$
 54.1
 75.4
 96.7
 139.3
 160.6
 203.2
 224.5
 245.8

Equations of the type (4) and (5) can likely be applied for the estimation of other thermodynamic properties (enthalpy, entropy, Gibbs's function, and others) of acetylenides, as it is possible for some classes of organic and organoelement compounds. 32,34-38 Equations of the type (2) and (3) allow the determination to which extent the contribution of the Ag and Au atoms to the heat capacity of phenylacetylenides is higher than the contribution of the Cu atoms. At 298.15 K the corresponding differences are 2.80 and 5.80 J K⁻¹ mol⁻¹. It can be assumed that this is valid for other acetylenides. Then, based on the C_p° values for copper acetylenides (they are presented in section *Thermodynamic func*tions), we can easily find C_p° for silver and gold acetylenides, the analogs of copper acetylenides. The calculations give the following values of C_p°/J K⁻¹ mol⁻¹ at 298.15 K for the corresponding silver and gold compounds: 112.2 and 118.0 for vinylacetylenides, 163.4 and 169.2 for butylacetylenides, 206.0 and 211.8 for hexylacetylenides, 181.3 and 187.1 for benzylacetylenides, and 187.2 and 193.0 for phenylethynylacetylenides.

The isobaric (C_p°) and isochoric (C_v) heat capacities of mercury diphenylacetylenide and terms of the heat

Fig. 3. Heat capacity of mercury diphenylacetylenide³¹: isobaric $C_p^{\circ}(I)$, isochoric $C_v(2)$, lattice $C_{v,\text{lat}}(3)$, and atomic $C_{v,\text{at}}(4)$.

capacity: the lattice $(C_{v,{\rm lat}})$ and atomic $(C_{v,{\rm at}})$ contributions³¹ are presented in Fig. 3. The isochoric heat capacity was calculated³¹ by the Nernst—Lindeman formula³⁹ using the experimental values of $C_p^{\,\circ}$ and melting point of copper diphenylacetylenide $T_{\rm fus}^{\,\circ}=397.6~{\rm K}.^{27}$

$$C_p^{\circ} - C_v = A_0 C_v^2 T / T_{\text{fus}}^{\circ},$$
 (6)

where $A_0=0.00512$ mol K $^{-1}$ J $^{-1}$ is a universal constant. Assuming that at T<30 K $C_p{}^\circ=C_v=C_{v,{\rm lat}}$, taking into account Debye's function for the heat capacity

$$C_n^{\circ} = nD(\Theta_D/T) \tag{7}$$

(D is the symbol of Debye's function of heat capacity, $\Theta_{\rm D}$ is the characteristic temperature, and n is the number of freedom degrees of vibrations of a molecule in the nodes of the crystalline lattice), we calculated $C_{v,{\rm lat}}$ for the 0—340 K region. The $\Theta_{\rm D}$ value found from the experimental data on C_p° at T < 30 K was used for the calculation of $C_{v,{\rm lat}}$ in the whole indicated interval.

The atomic contribution was calculated from the equation

$$C_{v,\text{at}} = C_v - C_{v,\text{lat}},\tag{8}$$

because $C_v = C_{v,{\rm lat}} + C_{v,{\rm at}}$. The plot $C_{v,{\rm lat}}(T)$ (see Fig. 3) is a curve with saturation, and the $C_{v,{\rm lat}}$ value becomes constant already at $T=70~{\rm K}$. The atomic component of the heat capacity $C_{v,{\rm at}}$ increases smoothly with temperature. The contribution of atomic vibrations appears at 20 K, and $C_{v,{\rm at}} = C_{v,{\rm lat}}$ already at 35 K. The ratio $C_p^{\,\circ}/C_v = \gamma$ varies for the compound in question from 1 (at temperatures close to 0 K) to 1.8 (at 340 K), which is typical, in general, of organic crystals.³⁹

It was of interest to obtain the values of fractal dimensionality D for the acetylenides, which is the most important magnitude in the fractal theory of heat capacity of solids, 40,41 because it allows conclusions about the character of heterodynamicity of solids. 42 According to

Table 4. Fractal dimensionality (*D*) and characteristic temperature (Θ_{max}) in Eqs. (9) and (10) for the studied acetylenides in the 25–50 K range

Com-	D	Θ_{\max}	δ^*
pound		/K	(%)
1	1.9	210.1	0.59
2	2.0	232.2	0.74
3	1.8	271.4	0.19
4	1.7	235.5	0.26
5	1.3	206.8	0.44
6	1.0	285.0	0.80
7	1.5	218.8	0.39
8	1.7	232.5	0.15
9	1.0	331.0	0.60

^{*} The error with which Eqs. (9) and (10) reproduce the heat capacity of acetylenides using the D and $\Theta_{\rm max}$ parameters found for them in the temperature range from 25 to 50 K.

previous data, ⁴⁰ D can be found from the plot $\ln C_n = f(\ln T)$, which follows from the formula

$$C_{\nu} = 3D(D+1)kN\gamma(D+1)\xi(D+1)(T/\Theta_{\text{max}})^{D},$$
 (9)

where k is the Boltzmann constant, N is the number of atoms in a molecule, $\gamma(D+1)$ is the γ -function, $\xi(D+1)$ is the Rieman ξ -function, and Θ_{\max} is the maximum characteristic temperature. For a specific solid $3D(D+1)kN\gamma(D+1)\xi(D+1)=A$ is the constant value, and Eq. (9) can be written as

$$ln C_v = ln A + Dln(T/\Theta_{\text{max}}).$$
(10)

Assuming⁴³ that at T < 50 K for the studied organoacetylenides $C_p^{\circ} = C_v$, then using the corresponding experimental data on the heat capacity, we obtain D (Table 4).

For solids with the chain, laminated, and spatial structures, the D values are 40,44 1, 2, and 3, respectively. The fractional D values indicate the mixed heterodynamic structure of the solids. For the acetylenides under study. D range from 1.0 to 2.0, *i.e.*, they have the chain (D=1), laminated-chain (1 < D < 2), and laminated (D=2) structures. The fractal dimensionality D for gold and mercury phenylacetylenides is 1, *i.e.*, they possess the chain structure. Vinylacetylenide and, most likely, butylacetylenide are characterized by the laminated structure because for them D=2. Other acetylenides have the laminated-chain structure with predomination of layers or chains, depending on the D layers: for D > 1.5 layers predominate, and for D < 1.5 chains predominate.

The heat capacity of solids with the laminated structure is described ^{42,44} by Tarasov's biparametric function for heat capacity taking into account the interaction of the layers

$$C_{2,3} = D_2(\Theta_2/T) - (\Theta_3/\Theta_2)[D_2(\Theta_3/T) - D_3(\Theta_3/T)], (11)$$

where $C_{2,3}$ is the heat capacity of the interacting layers, D_2 is Tarasov's function for heat capacity, D_3 is Debye's

function for heat capacity, and Θ_2 and Θ_3 are Tarasov's and Debye's characteristic temperatures, respectively. The Θ_3/Θ_2 ratio characterizes the interaction of the layers (interaction parameter). It changes within 0 and 1, and $\Theta_3/\Theta_2=0$ corresponds to hypothetical laminated substances without interaction between layers, whereas $\Theta_3/\Theta_2=1$ corresponds to substances, whose energies of interaction between the layers and inside the layers are the same, *i.e.*, in this case, we deal with a spatial structure.

The heat capacity of solids with the chain structure is described by Tarasov's biparametric function for heat capacity^{42,44} taking into account the chain interaction

$$C_{1,3} = D_1(\Theta_1/T) - (\Theta_3/\Theta_1)[D_2(\Theta_3/T) - D_3(\Theta_3/T)], (12)$$

where $C_{1,3}$ is the heat capacity of interacting chains, D_1 is Tarasov's one-dimensional function for heat capacity, D_3 is Debye's function for heat capacity, Θ_1 and Θ_3 are Tarasov's and Debye's characteristic temperatures, respectively, and the Θ_3/Θ_1 ratio is the chain interaction parameter (as in the case of solids with the laminated structure, it changes from 0 to 1).

The heat capacity of solids with the laminated-chain structure is described by the equation

$$C_{1,2,3} = D_1(\Theta_1/T) - (\Theta_2/\Theta_1)[D_1(\Theta_2/T) - D_2(\Theta_2/T)] - [\Theta_3^2/(\Theta_1\Theta_2)][D_1(\Theta_3/T) - D_3(\Theta_3/T)].$$
(13)

The specific form of the D_1 , D_2 , and D_3 functions is presented in several works. 42,44-46 Starting from the experimental data on C_p° for the acetylenides studied (see section Thermodynamic functions) and Eqs. (11)-(13), we can select the Θ_1 , Θ_2 , and Θ_3 parameters, estimated the interaction parameter of layers (Θ_3/Θ_2) and chains (Θ_3/Θ_1) for acetylenides under consideration. The heat capacity functions $C_{2,3}$ and $C_{1,3}$ are tabulated 47,48 and, hence, the selection of the Θ_1 , Θ_2 , and Θ_3 values in Eqs. (11) and (12) is not difficult. Tables for $C_{1,2,3}$ are not available, and this impedes the selection of the corresponding parameters for Eq. (13). Therefore, to estimate the interaction parameters of layers and chains in laminated-chain acetylenides with 1.5 < D < 2, we used Eq. (11), and for those characterized by $1 \le D \le 1.5$, Eq. (12) was used. The Θ_1 , Θ_2 , and Θ_3 parameters were selected for the 25-30 K temperature interval. As a result, we obtained the following values of interaction parameters: for the chain gold and mercury phenylacetylenides Θ_3/Θ_1 are 0.5 and 0.9, respectively; for the laminated copper butylacetylenide and vinylacetylenide Θ_3/Θ_2 is 0.8 and 0.3, respectively; for laminated-chain copper hexyl-, phenyl-, and benzylacetylenides it is 0.3; and for silver phenylethynylacetylenide and phenylacetylenide it is 0.6 and 0.8, respectively.

Thermodynamic functions. The values of enthalpy $H^{\circ}(T) - H^{\circ}(0)$, entropy $S^{\circ}(T)$, and the Gibbs function $G^{\circ}(T) - H^{\circ}(0)$ for the studied acetylenides are presented in Table 5. For the calculation of thermodynamic functions, the C_{p}° values of acetylenides were extrapolated

Table 5. Thermodynamic functions of the studied acetylenides under standard pressure

\overline{T}	C_p°	$S^{\circ}(T)$ H	$\circ(T) - H^{\circ}(0) - [$	$\overline{G^{\circ}(T) - H^{\circ}(0)]}$	\overline{T}	C_p°	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0) -$	$-[G^{\circ}(T) - H^{\circ}(0)]$
/K	J K ⁻¹ mol ⁻¹ kJ mol ⁻¹		1-1	/K		1 mol ⁻¹	kJ mol⁻¹		
	Co	opper vinyla	cetylenide (1) ²¹		50	40.72	29.79	0.9199	0.5694
5	0.1604	0.0533	0.00021	0.00005	100	74.44	69.26	3.862	3.064
10	1.271	0.4281	0.0032	0.00104	200	127.6	137.4	13.99	13.48
15	3.800	1.382	0.0154	0.0053	298.15	178.5	197.6	28.96	29.95
20	6.960	2.903	0.0423	0.0158	330	119.6	216.6	34.98	36.50
25	10.53	4.835	0.0859	0.0349		Coppe	r phenyleth	ynylacetylenide	$(8)^{21}$
50	27.62	17.51	0.5679	0.3078	5	0.3550	0.1061	0.0004	0.00009
100	54.26	45.71	2.679	1.893	10	2.688	0.9196	0.0069	0.0022
200	86.00	93.86	9.807	8.966	15	6.950	2.784	0.0307	0.0110
298.15	109.4	133.3	19.62	20.38	20	11.52	5.384	0.0765	0.0312
315	114.2	138.8	21.30	22.42	25	16.56	8.489	0.1466	0.0657
	Co	pper butyla	cetylenide (2) ²²		50	42.62	28.33	0.8999	0.5163
5	0.1920	0.0460	0.0002	0.00003	100	76.03	69.37	3.956	2.981
10	1.554	0.4932	0.0038	0.0011	200	132.3	139.9	14.46	13.52
15	4.032	1.565	0.0175	0.0060	298.15	184.4	202.7	30.06	30.38
20	6.935	3.105	0.0045	0.0175	330	202.3	222.3	36.21	37.14
25	10.89	5.063	0.0888	0.0377				acetylenide (5) ²	
50	32.80	19.29	0.6339	0.3306	5	1.345	0.6494	0.00233	0.00092
100	72.66	55.38	3.351	2.188	10	5.645	2.738	0.0187	0.00872
200	121.8	122.1	13.25	11.16	15	11.52	6.102	0.00612	0.0304
298.15	160.6	178.3	27.19	25.97	20	13.00	10.30	0.1350	0.0711
330	175.8	195.3	32.53	31.92	25	23.89	14.96	0.2399	0.1341
		per hexylac	etylenide $(3)^{23,4}$		50	47.53	39.47	1.158	0.8148
5	0.3370	0.1128	0.0004	0.000141	100	74.51	81.52	4.268	3.883
10	2.018	0.8112	0.0059	0.00218	200	115.1	145.7	13.76	15.38
15	5.010	2.149	0.0230	0.00927	298.15	156.8	199.3	27.08	32.14
20	9.000	4.134	0.0579	0.02476	330	169.3	215.9	32.28	38.97
25	13.97	6.670	0.1152	0.05152				acetylenide (6) ²	
50	42.10	24.89	0.8131	0.4313	5	1.168	0.3918	0.0015	0.00049
100	89.21	69.43	4.163	2.780	10	6.827	2.745	0.0201	0.0074
200	151.3	151.6	16.38	13.95	15	12.69	6.652	0.0697	0.0303
298.15	203.2	221.6	33.75	32.33	20	17.62	11.01	0.1454	0.0748
340	230.2	250.0	42.79	42.20	25	23.12	15.52	0.2470	0.1410
			acetylenide (4)2		50	45.27	38.77	1.117	0.8214
5	0.2887	0.0658	0.00029	0.00004	100	76.56	80.59	4.225	3.834
10	2.218	0.7302	0.0056	0.00165	200	119.5	147.2	14.08	15.36
15	6.080	2.320	0.0259	0.00888	298.15	162.6	202.9	27.91	32.58
20	10.56	4.715	0.0681	0.0262	330	178.4	220.2	33.34	39.32
25	14.66	7.510	0.1311	0.0566		Merc	ury dipheny	alacetylenide (9)	31,49
50	35.95	24.58	0.7775	0.4516	5	1.744	0.5908	0.0022	0.00074
100	66.90	59.80	3.406	2.574	10	8.67	3.801	0.0273	0.0107
200	113.0	120.7	12.45	11.68	15	17.44	8.953	0.0924	0.0419
298.15	154.0	173.8	25.65	26.17	20	26.22	15.18	0.2016	0.1020
330	166.1	190.0	30.73	31.97	25	32.54	21.74	0.3492	0.1944
		pper benzvla	cetylenide $(7)^{2}$		50	64.20	54.14	1.563	1.144
5	0.4440	0.1428	0.0006	0.00016	100	120.8	116.9	6.259	5.435
10	3.355	1.053	0.0078	0.0027	200	194.4	223.6	22.06	22.67
15	8.320	3.325	0.0367	0.0132	298.15	276.8	315.9	45.01	49.17
20	13.16	6.382	0.0904	0.0372	340	319.4	354.9	57.47	63.21
25	18.27	9.865	0.1689	0.0777	2.0	0.2,00		· · · · · ·	00.21
	10.27	7.005	3.1007						

from T (the lower limit of measurements, see Table 2) to 0 K by Debye's function of heat capacity (Eq. (7)) using the specially selected parameters n and Θ_D (Table 6). For this n we accepted that in the studied temperature interval Eq. (7) reproduces the heat capacity with the same error as that presented in Table 6. The enthalpy and entropy were calculated by the numeri-

cal integration from the curves $C_p^{\circ} = f(T)$ and $C_p^{\circ} = f(\ln T)$, and the Gibbs function was calculated from the enthalpy and entropy at the corresponding temperatures. The procedure of calculation of the functions has been described previously (see, e.g., Ref. 49). We believe that the error of the calculated functions is from 2 to 1%, 0.5%, and 0.2—0.3% at T < 30 K, in an

Table 6. Selected parameters n and Θ_D in Eq. (6)

Com-	n	Θ_{D}	T*	δ**	Com-	п	Θ_{D}	T*	δ**
pound		1	K	(%)	pound			K	(%)
1	3	115.2	14—19	1	6	3	59.09	14—18	0.6
2	2	94.20	14—19	1	7	4	91.04	14—19	3
3	3	107.4	14—19	0.3	8	3	88.30	14—19	1
4	3	94.50	11-16	1	9	3	51.45	6—9	1.7
5	3	65.68	14—20	1.2					

^{*} The temperature interval for which n and Θ_D in Eq. (7) were selected.

Table 7. Enthalpy of combustion and thermodynamic parameters of formation of the copper, silver, gold, and mercury acetylenides in the crystalline state at T = 298.15 K and p = 101.325 kPa

Com-	$-\Delta H_{ m c}^{\circ}$	$-\Delta H_{ m f}^{\circ}$	$-\Delta G_{ m f}^{\circ}$	$-\Delta S_{\mathrm{f}}^{\circ}$	$\log K_{\mathrm{f}}^{\circ}$	Refe-
pound		kJ mol ^{−1}		$/J K^{-1} mol^{-1}$		rence
1	2456.0±1.7	-296.0±2.8	-331.8±1.0	119.3±1.0	58.12	33
2	3877.0 ± 2.6	-73.2 ± 3.5	-214.6 ± 3.7	474.3 ± 0.7	37.59	22
3	5067.7 ± 3.3	100.4 ± 3.3	101.5 ± 3.4	677.1 ± 0.6	-17.8	23, 49
4	4316.0 ± 1.3	-296.0 ± 2.1	-365.0 ± 2.3	231.6 ± 0.7	63.94	24
5	4209.0 ± 1.7	-346.0 ± 1.7	-410.0 ± 1.9	215.4 ± 0.8	71.91	25
6	_	_	_	216.7 ± 1.3	_	26
7	_	_	_	344.0 ± 1.0	_	*
8	_	_	_	214.2 ± 0.6	_	*
9	8344.6±4.8	-621.3 ± 5.2	-771 ± 6	504.5 ± 2.3	-135.3	31, 49

^{*} This work.

interval of $30-80\,$ K, and from 80 to $330\,$ K, respectively.

Enthalpies of combustion and thermodynamic parameters of formation. Table 7 contains the thermodynamic characteristics of formation for all studied acetylenides. The enthalpies of combustion $\Delta H_{\rm c}{}^{\circ}$ were calculated from the energies of combustion of the studied samples at the standard pressure $\Delta U_{\rm c}{}^{\circ}$, and they were calculated in turn by the average energies of combustion $\Delta \bar{U}_{\rm c}$ (see Table 3). The calculation procedure has previously been described in detail.⁵⁰ The enthalpies of formation $\Delta H_{\rm f}^{\circ}$ of copper vinyl-, butyl-, hexyl-, and phenylacetylenides and silver phenylacetylenide were calculated from the $\Delta H_{\rm c}^{\circ}$ values, enthalpies of formation of liquid water, gaseous carbon dioxide, and crystalline metal oxides⁵¹ at T = 298.15 K and p = 101.325 kPa. The entropies of formation ΔS_f° were calculated from the entropies $S^{\circ}(T)$ of the acetylenides studied (see Table 5), and the $S^{\circ}(0)$ value was neglected. The Gibbs functions $\Delta G_{\rm f}^{\circ}$ for acetylenide formation from simple substances at 298.15 K and standard pressure were calculated by the $\Delta H_{\rm f}^{\circ}$ and ΔS_f° values at 298.15 K.

All values presented in Table 7 are referred to the combustion and formation of the acetylenides studied. As an example, let us consider the processes of combustion and formation of copper hexylacetylenide

$$C_8H_{13}Cu (cr.) + 11.75 O_2 (g.) =$$

= 8 $CO_2 (g.) + 6.5 H_2O (liq.) + CuO (cr.),$

8 C (cr., gr.) + 6.5
$$H_2$$
 (g.) + Cu (cr.) = C_8H_{13} Cu (cr.),

where the physical state of reactants are indicated in parentheses: cr. is crystalline, g. is gaseous, liq. is liquid and gr. is graphite.

The logarithms of thermodynamic equilibrium constants of acetylenide formation from simple substances were calculated from ΔG_f° using the equation

$$\log K_{\rm f}^{\circ} = -\Delta G_{\rm f}^{\circ} / [2.303R \cdot 298.15 \text{ (K)}], \tag{14}$$

where R is the universal gas constant.

* * *

In this work, we considered for the first time all published to date thermodynamic characteristics of copper, silver, gold, and mercury acetylenides: temperature plots of the heat capacity $C_p^{\circ} = f(T)$, enthalpy

^{**} The error with which Eq. (7) describes experimental values of heat capacity in the indicated T interval with the selected n and Θ_D values.

 $H^{\circ}(T)-H^{\circ}(0)$, entropy $S^{\circ}(T)$, and Gibbs function $G^{\circ}(T)-H^{\circ}(0)$ for the region from 0 to 340 K; standard values of enthalpies of combustion $\Delta H_{\rm c}^{\circ}$ and formation $\Delta H_{\rm f}^{\circ}$, entropy $\Delta S_{\rm f}^{\circ}$, Gibbs function $\Delta G_{\rm f}^{\circ}$ of formation at T=298.15 K and standard pressure.

A linear dependence of the heat capacity of copper, silver, and gold phenylacetylenides on the mass of the corresponding metal atom at T > 150 K was observed. The difference in the contributions of the Ag and Au atoms to the heat capacity of these acetylenides and the contribution of the Cu atom at T = 298.15 K were estimated. Under the assumption of similar differences for other acetylenides, we determined the heat capacity values for silver and gold acetylenides with the same composition as the studied copper acetylenides. Using the data on the temperature plots of the acetylenides and the fractal version of Debye's theory of heat capacity, we found the fractal dimensionalities D for each acetylenide studied. For the studied acetylenides, $1 \le D \le 2$, *i.e.*, they have the linear (D = 1), laminated (D = 2) or laminated-chain $(1 \le D \le 2)$ structure. The heat capacity of these structures is described by the corresponding Tarasov's functions of heat capacity. Based on the selection of the corresponding functions for the acetylenides considered and taking into account the experimental plots of their heat capacities, we estimated the corresponding interaction parameters of chains and layers. They vary from 0.3 for copper phenylacetylenide to 0.9 for mercury phenylacetylenide. Thus, analysis of the temperature plots of the heat capacities on the basis of the theory of heat capacity of solids gave a concept on the heterodynamic character of the acetylenides studied.

References

- 1. A. N. Nesmeyanov and N. A. Nesmeyanov, *Nachala organicheskoi khimii* [*Principles of Organic Chemistry*], Khimiya, Moscow, 1974, **2**, 744 pp. (in Russian).
- V. S. Zavgorodnii, L. E. Mikhailov, A. A. Petrov, Yu. T. Struchkov, and D. S. Yufit, Tez. dokl. V Vsesoyuz. konf. metalloorgan. khimii [Proc. V All-Union Conf. on Organomet. Chemistry], Riga, 1991, 72 (in Russian).
- S. A. Hardinger, J. A. Jakubowski, and P. L. Fuchs, *Bioorg. Med. Chem. Lett.*, 1991, 1, 73.
- F. Cataldo, Eur. J. Solid State Inorg. Chem., 1998, 35, 281; 293.
- 5. A. M. Sladkov, *Polisopryazhennye polimery* [*Polyconjugated Polymers*], Nauka, Moscow, 1979, 246 pp. (in Russian).
- B. V. Lebedev, Izv. Akad. Nauk, Ser. Khim., 2000, 971
 [Russ. Chem. Bull., Int. Ed., 2000, 49, 965].
- Yu. P. Kudryavtsev, S. E. Evsyukov, M. B. Guseva,
 V. G. Babaev, and V. V. Khvostov, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 450 [Russ. Chem. Bull., 1993, 42, 399 (Engl. Transl.)].
- V. S. Myl'nikov, Usp. Khim., 1968, 37, 78 [Russ. Chem. Rev., 1968, 37 (Engl. Transl.)].
- A. M. Sladkov and L. Yu. Ukhin, *Usp. Khim.*, 1968, 37, 1750 [*Russ. Chem. Rev.*, 1968, 37 (Engl. Transl.)].
- A. M. Sladkov and I. R. Gol'ding, *Usp. Khim.*, 1979, 48, 1625 [Russ. Chem. Rev., 1979, 48 (Engl. Transl.)].

- N. N. Travkin, I. G. Gol'ding, T. A. Sladkova, B. G. Gribov, A. M. Sladkov, and N. F. Kononov, *Zh. Obshch. Khim.*, 1976, **46**, 1088 [*J. Gen. Chem. USSR*, 1976, **46** (Engl. Transl.)].
- 12. G. T. Coates and C. Parkin, *J. Inorg. Nucl. Chem.*, 1961, **22**, 59.
- 13. D. Blake, G. Calvin, and G. E. Coates, *Proc. Chem. Soc.*, 1959, **55**, 396.
- M. L. Green, Organometallic Compounds, Methuen, London, 1968, 2, 274.
- B. V. Lebedev, *Vysokomol. Soedin.*, A, 1998, 40, 1830
 [*Polym. Sci., Ser. A*, 1998, 40 (Engl. Transl.)].
- E. G. Kiparisova and B. V. Lebedev, *Vysokomol. Soedin.*, A, 1998, 40, 921 [*Polym. Sci.*, Ser. A, 1998, 40 (Engl. Transl.)].
- I. B. Rabinovich, V. P. Nistratov, V. I. Tel'noi, and M. S. Sheiman, Termodinamika metalloorganicheskikh soedinenii [Thermodynamics of Organometallic Compounds], Nizhegorodskii Gos. Un-t, N. Novgorod, 1996, 231 (in Russian).
- C. E. Castro, E. I. Gaughan, and D. C. Owsley, *J. Org. Chem.*, 1966, 31, 4071.
- G. E. Coatses and C. Parkin, J. Chem. Soc., 1962, No. 8, 320.
- G. Eglington and W. McCrae, J. Chem. Soc., 1963, No. 4, 2295.
- 21. T. A. Bykova and B. V. Lebedev, *Termodinamicheskie funktsii atsetilenidov medi v oblasti 0—330 K* [*Thermodynamic Functions of Copper Acetylenides in the Region of 0—330 K*], Cherkassy, Ukraine, 1981, 26 pp.; deposited in VINITI 15.04.81, No. 359khp-D81 (in Russian).
- B. V. Lebedev, T. A. Bykova, A. M. Sladkov, E. G. Kiparisova, and I. R. Gol'ding, *Zh. Obshch. Khim.*, 1981, 51, 524 [*J. Gen. Chem. USSR*, 1981, 51 (Engl. Transl.)].
- T. G. Kulagina, B. V. Lebedev, and N. N. Smirnova, Zh. Obshch. Khim., 2000, 70, 1249 [Russ. J. Gen. Chem., 2000, 70 (Engl. Transl.)].
- 24. B. V. Lebedev, T. A. Bykova, E. G. Kiparisova, N. N. Mukhina, A. M. Sladkov, and I. R. Gol'ding, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1979, 1880 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1979, 28 (Engl. Transl.)].
- B. V. Lebedev T. A. Bykova, A. M. Sladkov, E. G. Kiparisova, and I. R. Gol'ding, *Zh. Obshch. Khim.*, 1981, 51, 524 [*J. Gen. Chem. USSR*, 1981, 51 (Engl. Transl.)].
- T. A. Bykova and B. V. Lebedev, *Zh. Obshch. Khim.*, 2001,
 71, 2040 [*Russ. J. Gen. Chem.*, 2001, 71 (Engl. Transl.)].
- A. S. Carson and J. A. Spencer, J. Chem. Thermodyn., 1984, 16, 423.
- B. V. Lebedev and V. Ya. Lityagov, Termodinamika organicheskikh soedinenii. Mezhvuz. sb. [Thermodynamics of Organic Compounds. Interuniversity Collection of Works], Gor'kovskii Gos. Un-t, Gor'kii, 1976, 89 (in Russian).
- V. M. Malyshev, G. A. Mil'ner, E. L. Sorkin, and V. F. Shibakin, *Pribory i Tekhnika Eksperimenta [Experimental Equipment and Techniques*], 1985, No. 6, 195 (in Russian).
- V. I. Kosov, V. M. Malyshev, G. A. Mil'ner, E. L. Sorkin, and V. F. Shibakin, *Izmeritel'naya Tekhnika [Measurement Techniques*], 1985, No. 11, 56 (in Russian).
- T. A. Bykova, B. V. Lebedev, and A. V. Markin, *Zh. Obshch. Khim.*, 2000, **70**, 1483 [*Russ. J. Gen. Chem.*, 2000, **70** (Engl. Transl.)].
- B. V. Lebedev and E. G. Kiparisova, Zh. Fiz. Khim., 1996,
 1351 [Russ. J. Phys. Chem., 1996, 70 (Engl. Transl.)].
- 33. T. A. Bykova and B. V. Lebedev, Khimiya elementoorganicheskikh soedinenii, Mezhvuz. sb. [Chemistry of Organoelement Compounds. Interuniversity Collection of

- Works], Gor'kovskii Gos. Un-t, Gor'kii, 1981, 86 (in Russian).
- B. Lebedev and N. Smirnova, *Macromol. Chem. Phys.*, 1997, 195, 35.
- V. G. Vasil'ev and B. V. Lebedev, *Vysokomol. Soedin.*, A, 1988, 40, 806 [*Polym. Sci. USSR*, Ser. A, 1988, 40 (Engl. Transl.)]
- 36. E. G. Kiparisova and B. V. Lebedev, *Zh. Obshch. Khim.*, 1998, **68**, 244 [*Russ. J. Gen. Chem.*, 1998, **68** (Engl. Transl.)].
- 37. B. V. Lebedev, *Usp. Khim.*, 1996, **65**, 1149 [*Russ. Chem. Rev.*, 1996, **65** (Engl. Transl.)].
- 38. B. V. Lebedev and N. N. Smirnova, *Khimicheskaya* termodinamika polialkanov i polialkenov [Chemical Thermodynamics of Polyalkanes and Polyalkenes], Izd-vo Nizhegorodskogo Gos. Un-ta, N. Novgorod, 1999, 274 pp. (in Russian).
- Physics and Chermistry of the Organic Solid State,
 Eds. D. Tox, M. Lates, and A. Weissberger, New York— London, 1965, 1.
- T. S. Yakubov, *Dokl. Akad. Nauk SSSR*, 1990, 310, 145 [*Dokl. Chem.*, 1990 (Engl. Transl.)].
- 41. A. D. Izotov, O. V. Shebershneva, and K. S. Gavrichev, Tr. Vseros. konf. po termicheskomu analizu i kalorimetrii [Proc. All-Russian Conf. on Thermal Analysis and Calorimetry], Kazan, 1996, 200 (in Russian).
- 42. V. V. Tarasov, Zh. Fiz. Khim., 1953, 27, 1430 [J. Phys. Chem. USSR, 1953, 27 (Engl. Transl.)].

- 43. B. V. Lebedev and T. G. Kulagina, J. *Chem. Thermodynamics*, 1997, **29**, 595.
- 44. V. V. Tarasov, *Zh. Fiz. Khim.*, 1950, **24**, 111 [*J. Phys. Chem. USSR*, 1950, **24** (Engl. Transl.)].
- 45. V. V. Tarasov and G. A. Yunitskii, *Zh. Fiz. Khim.*, 1965, **39**, 2076 [*J. Phys. Chem. USSR*, 1965, **39** (Engl. Transl.)].
- 46. V. V. Tarasov, *Problemy fiziki stekla [Problems of Glass Physics*], Stroiizdat, Moscow, 1979, 225 pp. (in Russian).
- P. A. Chernoplekov, Zh. Fiz. Khim., 1953, 27, 878 [J. Phys. Chem. USSR, 1953, 27 (Engl. Transl.)].
- 48. B. Wunderlich, J. Chem. Phys., 1962, 37, 2076.
- T. G. Kulagina, T. A. Bykova, N. N. Smirnova, and B. V. Lebedev, Tez. dokl. VII Vseros. konf. metalloorgan. khimii [Proc. VII All-Russian Conf. on Organometallic Chemistry], Moscow, 1999, 2, 158 (in Russian).
- B. V. Lebedev, Termodinamika polimerov [Thermodynamics of Polymers], Gor'kovskii Gos. Un-t, Gor'kii, 1989, 112 pp. (in Russian).
- 51. S. M. Skuratov, V. P. Kolesov, and A. F. Vorob'ev, *Termokhimiya* [*Thermochemistry*], MGU, Moscow, 1966, **2**, 433 pp. (in Russian).
- 52. Termicheskie konstanty veshchestv, Spravochnik [Thermal Constants of Substances], Ed V. P. Glushko, VINITI, Moscow, 1965–1972, Issue 1–5 (in Russian).

Received January 31, 2001; in revised form April 24, 2001